Explicit estimates for polynomial systems defining irreducible smooth complete intersections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Criteria for complete intersections

We establish two criteria for certain local algebras to be complete intersections. These criteria play an important role in A. Wiles’s proof that all semi-stable elliptic curves over Q are modular. Introduction In this paper we discuss two results in commutative algebra that are used in A. Wiles’s proof that all semi-stable elliptic curves over Q are modular [11]. We first fix some notation tha...

متن کامل

Gale Duality for Complete Intersections

We show that every complete intersection defined by Laurent polynomials in an algebraic torus is isomorphic to a complete intersection defined by master functions in the complement of a hyperplane arrangement, and vice versa. We call systems defining such isomorphic schemes Gale dual systems because the exponents of the monomials in the polynomials annihilate the weights of the master functions...

متن کامل

Polynomial Basis Multipliers for Irreducible Trinomials

We show that the step “modulo the degree-n field generating irreducible polynomial” in the classical definition of the GF (2) multiplication operation can be avoided. This leads to an alternative representation of the finite field multiplication operation. Combining this representation and the Chinese Remainder Theorem, we design bit-parallel GF (2) multipliers for irreducible trinomials u + u ...

متن کامل

Curvature Estimates for Irreducible Symmetric Spaces

By making use of the classification of real simple Lie algebra, we get the maximum of the squared length of restricted roots case by case, thus we get the upper bounds of sectional curvature for irreducible Riemannian symmetric spaces of compact type. As an application, we verify Sampson’s conjecture in all cases for irreducible Riemannian symmetric spaces of noncompact type.

متن کامل

Smooth and Irreducible

The multigraded Hilbert scheme parametrizes all homogeneous ideals in a polynomial ring graded by an abelian group with a fixed Hilbert function. We prove that any multigraded Hilbert scheme is smooth and irreducible when the polynomial ring is Z[x, y], which establishes a conjecture of Haiman and Sturmfels.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2019

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa8387-8-2018